MEMBERS’ PEARLS

Taking a Custom Shade, Step by Step: A Technician’s Viewpoint

INTRODUCTION

Have you ever struggled with the selection of a shade for a single anterior tooth in a crown restoration? Were you satisfied with the final result? Was the patient? Does perception of color change from one person to another as to what looks good? In fact, perception of color is different for everyone. From a laboratory technician’s/ceramist’s point of view, custom shading for a single tooth restoration is one of the most time-consuming and difficult tasks; it is truly an art. This article offers a guideline—a checklist of points to be considered when selecting a shade—as well as a discussion about a case that presented this very issue, and the steps taken to achieve the patient’s requests.

Custom shading for a single tooth restoration is one of the most time-consuming and difficult tasks.

SHADE SELECTION—CLINICAL PROCEDURE

When mapping a custom shade request, it is important for the laboratory technician/ceramist to understand what the clinician is looking for. Goals and objectives must be discussed, stated, and decided prior to commencing the clinical procedure. The following is the checklist I use for making decisions in the selection of a perfectly matched custom shade for the anterior dentition.

CHECKLIST

1. Select surface and texture (Coarse? Shiny? Dull?). If the texture is not interpreted correctly, it will change the restoration’s appearance. Viewing the teeth from another angle will change the appearance, if the texture is not the same everywhere.

2. Determine value (High or low? Overlay with enamel? What color?). The value of a color is defined by the amount of reflection and absorption our eyes register when we view the tooth. How bright or dark is the color?
Dark colors register with a low value (more gray), light colors with a high value (more white.)

4. Determine translucency or transparency (Where is the tooth translucent or transparent? Divide the tooth into nine segments to determine the answer):
 - mesial gingival, mesial middle, mesial incisal
 - middle gingival, middle middle, middle incisal
 - distal gingival, distal middle, distal incisal.

5. Check stump (preparation) shade, especially with a complex case, for best material selection. A darker shade of tooth after preparation (stump) will change the appearance of a restoration because of possible bleed-through in the color.

6. Establish (identify) symmetry reflection (Concave or convex? Which areas show reflection?).

7. Understand tooth morphology (What does the adjacent tooth look like?). When deciding shade and opacity, we must consider the appearance and shape of the natural tooth, since a fabricated shade will be affected by the final crown’s form and size. The technician creates an illusion of a natural tooth, but in order for it to “work,” it must look real.

8. Determine material selection (Metal-free? Non-oxide metal?). Some choices are as follows:
 - Pressed Ceramics have made all-ceramics popular, with Empress (Ivoclar Vivadent; Amherst, NY) probably the best known. The first pressed ceramic was leucite, seen in veneers and crowns, due to its high translucent quality. It has been enhanced in popularity by lithium disilicate, used in crowns and bridges. It is stronger than leucite but not as translucent.
 - Zirconia is the most commonly used material in CAD/CAM. Some examples include Lava (3M ESPE; St. Paul, MN), Zerion® (Etkon; Arlington, TX) (Nobel Biocare; Yorba Linda, CA). They have the same strength as metal and are called all-ceramic steel.
 - Alumina was used before zirconia, with Procera, and Vita In-Ceram and Wol-Ceram (Vident; Brea, CA), being the most widely recognized brand names. Zirconia has replaced it, due to its strength.
 - Captek (Altamonte Springs, FL) is a composite gold material that does not oxidize. Pure gold is similar to Captek but requires a different technique.

9. Verify the presence of mamelons (Dark or light? What color? Crack or craze lines?). The incisal edge of a crowned maxillary incisor should duplicate the adjacent incisor precisely.
10. Take a photograph (with either a digital or a Polaroid Macro camera (Waltham, MA), set up with 3X shade tab and teeth at 90º perpendicular for best results. There should be no reflection and no angles).
11. Polish and glaze. (Use a well-calibrated porcelain oven, diamond pumice polish, and correction powder). Polishing the porcelain causes it to shine in the patient’s mouth.
12. Communicate. To achieve the best level of satisfaction for everyone involved—the patient, clinician, and technician—there has to be ongoing communication.

CLINICAL CASE

I considered all of the points above when determining the best restoration for a 16-year-old male patient, who presented with a fractured maxillary central incisor (tooth #9). The damage had occurred to the incisal half of the tooth in a skateboarding accident. The patient’s smile was severely compromised and needed restoration (Fig 1). A patient this young normally presents with a dull, coarse texture surface. This means that the final restoration cannot be shiny or glossy.

X-rays of the tooth after the accident revealed pulpal involvement, requiring endodontic treatment. The tissue involved was within a normal range. The root canal therapy was followed by crown preparation and involved a core buildup with fluorocore, with margins at a 360º shoulder preparation. The impression was taken with Examine Injectiona (GC America; Alsip, IL) (with heavy-body impression material. The temporary crown was then fabricated from Voco
bis-acryl temporary material (Cuxhaven, Germany).

Shade Mapping

The next step in this patient’s repair process was custom shade mapping. A slightly unusual enamel characteristic was noted: There were white decalcification spots visibly apparent on all the teeth (Fig 2).

This finding had to be taken into account when formulating the custom shade. A point the technician must always remember when taking a shade is that the environment and patient dehydration can play a significant role in the accuracy of the process. Dehydration will change surface texture (see Checklist, Step #1). The tooth will lose color and luster if it is dehydrated. I believe that the optimal amount of time to allow for a custom shade is approximately five minutes, since keeping a patient in the chair longer than that can lead to dehydration. In addition, if the clinician’s eyes become fatigued there is a decreased chance of correct color matching.

I created 0.2-mm shade tabs, thinner in consistency than the commercially developed brand and better able to match the finished restoration. When baked in a porcelain oven, the results are consistent and predictable, which is not always the case with a manufactured tab. The process was performed in order to correctly read the matching color for this patient’s maxillary anterior—a challenging procedure, considering the multi-faceted appearance of the teeth. I decided to use very subtle orange-brown hues with the white enamel (Fig 3). Shade mapping can be accomplished with external or internal staining/color. The three basic factors that must be taken into consideration are: Hue (tone), chroma (color saturation), and value.
Figure 11: An Ethen zirconia coping with a frame modifier base shade, applied by using GC Initial ZR porcelain.

Figure 12: Dentin shade and fluorocore dentin are applied to capture the internal colors.

Figure 13: “T” shape for light brown enamel.

Figure 14: Opal color and translucency modifier.

Figure 15: Cover with clear fluorescence.

Figure 16: Final enamel effect applied.
MeMber’s PeArls

(amount of reflection and amount of absorption).

There are five color tabs shown: A1 dentin, blue, white enamel, clear, and orange-brown (Fig 4). The clear tab will decrease the value or reflection of the color; white will increase it. When layered together on top of one another, they create a different reflection than that which meets the eye singularly.

MateriaL ChOice

The differences between the appearance of a natural tooth versus several all-ceramic and metal/porcelain combinations, without (Fig 5) and with (Fig 6) ultraviolet (UV) lighting, were used to determine the best material choice for the patient. It was decided that a porcelain-fused-to-metal (PFM) material was not a suitable match with the teeth in this case. Instead, it was determined that zirconia would create the best esthetic effect. This is often the case with a young patient, as youthful teeth are heavily calcified, whereas an older patient’s teeth are of lower value, due to the lack of enamel and more transparency (see Checklist, Step #8). For older patients, an alumina material is the better alternative.

A single central tooth, which I fabricated and photographed in a natural light, was used as a guide (Fig 7). In contrast, the next photograph demonstrates two Initial (GC America) porcelain fabricated premolars (Fig 8), presenting the different enamel characteristics of the color variances between the natural enamel and the guide. Shade and opacity are affected by the shape of the tooth (i.e., its morphology) (see Checklist, Step #7).
Preparation

Preparation plays an important role in checking the facial and incisal room for proper material selection, along with the stump shade (Fig 9). For the technician, the ideal space preparation for a tooth is 1.0 mm to 1.5 mm facially, in order to fabricate a properly matched restoration (see Checklist, Step #5).

With the help of a detailed shade-mapping guide, and strict attention to detail by the dentist and I, the shade of the final crown was naturally and ideally suited to the patient (Fig 10). An Etkon zirconia coping with a frame modifier base shade was applied, using Initial ZR porcelain, and served as the beginning of the hue or tone decision process (Fig 11) (see Checklist, Steps #2 to #4). Next, dentin shade and fluorocore dentin were applied to capture the tooth’s internal colors (Fig 12).

Figure 13 demonstrates how the “T” shape exhibited a translucent modifier near the gingival third and a light brown enamel (brown hue) at the incisal edge to pick up the internal colors. Opal color and translucency modifiers are picked up by color (Fig 14). In contrast, clear fluorescence is demonstrated in Figure 15. The final enamel effect with white stain was applied to obtain proper value (Fig 16). The first bake surface texture should be that of an orange peel or an eggshell in appearance, at 810° Celsius (Fig 17).

Surface Texture

Surface texture plays an important part in the overall illusion the technician creates in fabricating natural restorations. A variety of surface textures are presented here (Fig 18). To check the surface texture and symmetry reflection, a silver powder marker was placed on the surface of the maxillary central incisors. Artic-
ulating powder can be used in this procedure as well. The fixed restoration was then modified to give it the texture of the adjacent anterior dentition (Fig 19) (see Checklist, Step #1).

Final Restoration

The final restoration, a zirconia crown, was tried on the model for fit and occlusion verification (Fig 20). There was no bleed-through of any color or any change evident in material surface during the insertion try-in (Fig 21); in other words, the material was properly and harmoniously blended. The UV lighting showed the matching texture of the white incisal edge on both the crown and the natural tooth (Fig 22) (see Checklist, Step #9). The chipped incisal of tooth #8 would be corrected by the dentist with a direct composite, placed intraorally. An immediate postoperative dry view following the seating of #9 verified mamelons (Fig 23) (see Checklist, Step #6). In a rest position, once the tooth is moistened, note the harmony between the two maxillary central incisors (Fig 24) (see Checklist, Step #10).

Conclusion

I believe that custom shade matching is so important that spending one or two days with a patient after fabricating several copings is sometimes necessary (although it was not in this particular case). The restoration can then be checked under different light sources—morning, afternoon, late day, natural, indoor, etc., as required—and the technician can also become acquainted with the patient’s lifestyle patterns. In the long term, skipping steps or shortening the procedure does not help the development of a technician’s craftsmanship. If a restoration is poorly constructed or the color is selected in haste, the restoration will look like a restoration and not a natural tooth.

Numerous excellent new materials and application techniques are available today for the fabrication of dental restorations. This abundance has enhanced the custom shading process because the final effect is more esthetically pleasing. By concentrating on the surface texture (with glaze being the most important factor for this particular patient), I am proud to present a case that was beautifully constructed and crafted with care. Our team of three—I, the dentist and, most importantly, the patient—all were happy with the final result.

References